

Temporal Dynamics of Bilingual Language Processing as a New Lens into Human Brain Lateralization: An fNIRS Study

Kaja K. Jasińska1 and Laura-Ann Petitto*2,3

¹University of Toronto ²National Science Foundation Science of Learning Centre - Visual Language and Visual Learning, VL2 ³Gallaudet University Funding: Petitto (PI) NIH 5R01HD45822 and NIH 5R21HD050558, Canadian Foundation for Innovation, Ontario Research Fund

QUESTION

What are the neural origins of hemispheric lateralization for human language?

Monolinguals show largely left hemisphere (LH) lateralization for language processing e.g., Superior Temporal Gyrus (STG; BA 21/22), Left Inferior Frontal Gyrus (LIFG; BA 44/45)^{1,2,3} **Box 1**

New Finding in Bilinguals: Bilinguals show greater extent and variability of neural recruitment in LH language areas and their right hemisphere (RH) homologues for language processing³

New Question: Why does bilingualism yield greater bilateral activation vs monolingualism?

Novel Approach: Temporal dynamics of LH and RH contributions to language processing as a lens into greater bilingual bilateral activation

HYPOTHESES

- H1 Early bilingual language experience places additional processing demands on the developing brain requiring the recruitment of additional RH resources
- P1 Temporal Asynchrony LH activity followed by RH activity
- H2 Early bilingual language experience provides neural stimulation to language processing pathways, making possible enhanced development of both hemispheres
- P2 Temporal Synchrony Simultaneous LH and RH activity

METHOD

Participants

Near Infrared Spectroscopy (fNIRS)^{4,5}

Advance: Superior temporal resolution (10Hz) permits optimal temporal analysis necessary for this research question

NEUROIMAGING RESULTS

Early bilinguals show greater temporal synchrony in LH and RH

Hitachi ETG 4000

46 Channel

Inferior Frontal Gyrus Monolinguals: Faster time-to-peak change in HbO in LH vs RH

Bilinguals: Simultaneous time-toPegal
Herischer

Peak change in HbO in LH and RH

(faster time-to-peak change in HbO

in RH for irregular words)

Superior Temporal Gyrus

Monolinguals: Faster time-to-peak change in HbO in LH vs RH

Bilinguals: Simultaneous time-topeak change in HbO in LH and RH

Early bilinguals show greater neural recruitment in LH and RH

CONCLUSION

Bilinguals showed greater temporal synchrony in left and right IFG and STG for language processing vs monolinguals

Bilinguals

Simultaneous LH and RH activation

Supports H2

Synchronous temporal accessing of the two hemispheres suggests early life bilingual language experience may support more equal and efficient hemispheric involvement, and may give the bilingual a language and reading advantage

New Questions: Origin of laterality in our species?

Do all human infants begin life with language capacity lateralized to LH, with bilinguals recruiting extra RH as a result of enriched early life language experience?

Or, do all human infants being life with language capacity represented bilaterally with monolinguals attenuating language capacity primarily to LH as a result of reduced early life language experience?

REFERENCES

- 1 Petitto, Berens, Kovelmen, et al. (2012). Brain & Lang.
- 2 Petitto, Zatorre, et al. (2000). Proc. Natl. Acad. Sci. 97, 13961-13966
- 3 Kovelman, Baker, & Petitto (2008). J. Cog. Neurosci. 20, 153-169
- 4 Shalinsky, Kovelman, Berens, & Petitto (2010) J. Vis. Exp. 29 http://www.jove.com/index/details.stp?id=1268
- 5 Ye, Tak, Jang, Jung, & Jang (2009). Neuroimage, 44, 428-447
- 6 Woodcock (1991). Woodcock Language Proficiency Battery Revised

*CORRESPONDING AUTHOR

Laura-Ann.Petitto@gallaudet.edu; www.petitto.gallaudet.edu

Visual Language & Visual Learning, VL2;

and Brain and Language Laboratory, BL2 Society for Neuroscience 2012

BOX 1

Left Inferior Frontal Gyrus (LIFG) Word meanings, morphology, syntax

Superior Temporal Gyrus (STG) Phonology