Inside the Baby's Brain: New Insights Into How Bilingual & Monolingual Babies Discover Language

Matthew Dubins¹, Melody S. Berens¹, Ioulia Kovelman², Mark Shalinsky¹, & *Laura-Ann Petitto¹

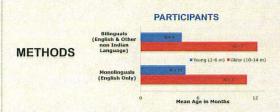
¹University of Toronto, ²Massachussets Institute of Technology Funding: Petitto (PI) NIH 5R21HD050558, NIH 5R01HD45822, Canadian Foundation for Innovation, Ontario Research Fund

INTRODUCTION

From birth, babies have the capacity to discriminate categorically the smallest "building blocks" of language—the phonetic units such as in [ba] [da]-from any of the world's languages. By 10-12 months, they lose this universal capacity, and, instead, hone in on the phonetic inventory of their native language with increased precision 1-2

LIVELY CONTROVERSY

Decades of behavioral research has not been able to adjudicate whether infants use auditory-general3-4 or language-dedicated5-8 mechanisms to learn the sounds of their native language


NEW OUESTIONS - BILINGUAL BABIES

- 1 Do infants recruit auditory-general or language-dedicated neural tissue for learning the sounds of their native language?
- 2 Do infants learning TWO languages show a similar pattern and developmental trajectory in their neural tissue recruitment for learning the sounds of their native language?

HYPOTHESIS

Infants use language-dedicated brain mechanisms to learn the sounds of their native language

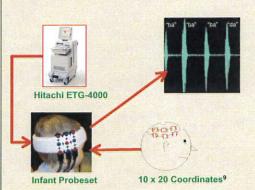
INNOVATIVE PROCEDURES

Infant Brains & functional Near-Infrared Spectroscopy (fNIRS) - ADVANTAGES OVER fMRI

- Closer measure of hemodynamic change (HbOxy, HbDeoxy, HbT) Used with INFANTS, and up
- (Quiet, tolerant of movement) Excellent spatial (~4 cm) and temporal (10 Hz) resolution

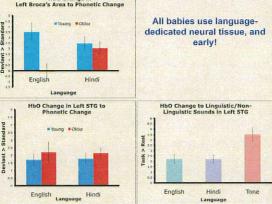
Ideal for Language/Cognitive Studies across the lifespan

New Oddball Paradigm

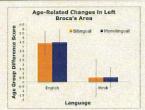

TWO Language Conditions

NATIVE (English) Syllables [ba] and [da]10 NON-NATIVE (Hindi) Syllables [ta] and [ta]10

60% - Standard Syllables


10% - Deviant Syllables 30% - Catch

INNOVATIVE PROCEDURES



RESULTS

HbO Change in

RESULTS

Same Developmental time scale for Bilingual and Monolingual babies

CONCLUSIONS

Do infants use auditory-general or language-dedicated brain mechanisms to learn native language sounds?

Language-dedicated & Early!

- · Brain changes were seen dependent on baby's age + language milestone
- Superior Temporal Gyrus (STG) is on-line very early (~2-6 m) from the get go, (i.e., the universal phonetic discrimination milestone)
- Broca's area comes on-line later (~10-14 m), (i.e., the first word milestone)

Do bilingual infants show the same developmental trajectory as monolingual infants? YES!

· Bilingual and monolingual infants showed the same recruitment of languagededicated neural tissue, suggesting that infants hone in on their native language on the same time-table when they receive language input from multiple languages

ADVANCES IN SCIENCE FROM fNIRS

- · For the first time, fNIRS brain imaging permits us to see into a baby's brain and to observe the relationship between neural processing and language acquisition milestones
- Here we observed

Which brain structures mediate specific parts of language organization When they come on line, and

How they change and develop over time!

References

- 1 Baker, S. A. Golinkoff, R., & Petitto, L.A. (2006). Language Learning and Development, 2(3), 147-162. 2 Jusczyk, P.W. (1997)
- 3 Kuhl PK & Padden D.M. (1983). Journal of the Acoustical Society of America, 67, 1003-1016
- 4 Saffran, J.R. et al. (1999). Cognition. 70(1), 27-52.
- - 6 Petitto, L. A. et al. (2004). Cognition. 93, 43-73.
- 7 Marcus, G. F. et al. (1999). Science, 283, 77-80.
- 8 Marcus, G. F. (2000). Current Directions in Psychological Science, 9, 145-147.
- 9 Jasper, H.A. (1958). Electroencepholography and Clinical Neurophysiology. 10, 371–375.
 10 Werker, J.F. & Tees, R.C. (1984). Infant Behaviour and Development, 7, 49-63.